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COMMENT 
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Abstract. Soliton dynamics in hydrogen-bondedsystems are usually modelled by considering 
the system to consist of two interacting sublattices: one of protons with a non-linear on-site 
potential and the other of coupled heavy ions. Using the potential recently proposed by 
Pnevmatikos but with a linear interaction between the sublattices, we propose an alternative 
model which explains the formation and propagation of ionic and Bjerrum defects in ice and 
other hydrogen-bonded systems. 

Recently, there have been many attempts (Zolotariuk et a1 1984, Laedke et a1 1985, 
Pnevmatikos 1987, Yomosa 1983) to describe the mechanism of proton conductivity in 
hydrogen-bonded systems. The common features in all these theories is that one can 
model the dynamics of protons in hydrogen-bonded networks by a characteristic non- 
linear substrate potential with two degenerate equilibrium positions. The model usually 
consists of two interacting sublattices: one of harmonically coupled light ions (protons) 
with a doubly degenerate non-linear on-site potential and the other of harmonically 
coupled heavy ions. The theories differ in choosing the form of interaction between the 
two sublattices. Usually a non-linear (in light-ion displacement) coupling (Zolotariuk et 
a1 1984, Laedke et a1 1985) between the two sublattices are considered, although there 
are models (Pnevmatikos 1987, Yomosa 1983) which consider a linear coupling. The two- 
component soliton (kink) propagation (which occurs in all these theories) is proposed as 
a possible mechanism for proton conductivity in these hydrogen-bonded systems. In a 
recent letter, Pnevmatikos (1988) proposed a new model for describing ‘simultaneously’ 
both ionic and Bjerrum defect formation and propagation in ice and other related 
hydrogen-bonded semiconductors. In that model, a non-linear on-site potential of 
double sine-Gordon type (instead of the usual Aq4 type) is considered for the light ions 
(protons) with a non-linear coupling between the two sublattices. 

In this communication, we propose an alternative model for proton conductivity in 
hydrogen-bonded systems, which consists of the same non-linear on-site potential as in 
the letter by Pnevmatikos (1988), but with only a ‘linear’ interaction between the two 
sublattices. We show that the two-component soliton in this model is also able to explain 
the formation and propagation of ionic and Bjerrum defects in ice and other related 
hydrogen-bonded systems. The interaction term satisfies the condition (Pnevmatikos 
1988) that it vanishes when one of the two sublattices is at rest. 

09.53-8984/90/092331 + 03 $03.50 @ 1990 IOP Publishing Ltd 2331 



2332 Comment 

The Lagrangian which describes our model can be written in the continuum limit as 

2 = (m/2)[(au/at)2 - C;(au/axy] - yV(u)  

+ (M/2)[(du/dt)2 - u;(au/ax)2] - g(au/ax)(au/ax) (1) 

where the fields u(x ,  t )  and u ( x ,  t )  describe the displacements of light ions (protons of 
mass m) and heavy ions (mass M )  respectively, V(u) is the non-linear on-site potential 
which is taken to be of the same form as that used by Pnevmatikos (1988) (equation ( 3 ) ) ,  
g and y are the coupling constants, and co and uo are the characteristic velocities of the 
light- and heavy-ion lattices respectively with co > uo. In the travelling-wave frame 6 = 
x - ct, the equations of motions can be written as 

m(c2 - c;)uE5 - guE5 + y(dV/du) = 0 

M(C2 - u;)vcE - g u g  = 0. 

- u t  = [ g / M ( u i  - c2) ]u t  + I  

( 2 )  

(3) 

(4) 

Equation (3) can be integrated once to give 

where the integration constant I can be taken to be zero if we assume that u5, vE+ 0 as 
E+- tm. Using equation (4) in equation ( 2 )  we obtain 

[m(c2 - c;) + g 2 / M ( u i  - C ’ ) ] U E ~  + Y(dV/du) = 0. ( 5 )  
Now, if we use the same non-linear on-site potential V(u) as considered by Pnevmatikos 
(1988), then equations (4) and (5) reduce to the same form as equations (6) and (7)  
respectively of the letter by Pnevmatikos. Thus, the displacement fields of the light and 
heavy ions in our model will be of the same form as those used by Pnevmatikos (1988) 
and consequently the four defects (kinks and anti-kinks) should also show the same 
behaviour in the presence of an externally applied DC field. 

Thus we see that even a linear coupling between the two sublattices produces 
displacement field patterns which can effectively explain the ionic and Bjerrum defects 
in ice and related hydrogen-bonded systems. The displacement field patterns are shown 
to be of the same form as those obtained by Pnevmatikos (1988) in which a non-linear 
coupling between the two sublattices is considered. 

In conclusion, we would like to note the following observations: as has been 
mentioned above, various theories for describing the dynamics of proton in hydrogen- 
bonded systems differ mainly in choosing the form of interaction between the sublattices. 
When one examines these current ‘solvable’ models for hydrogen-bonded systems, one 
finds that their solvability originates from the chosen form of interaction term between 
the sublattices. The ‘trick’ is to choose the interaction term in such a way that, after it is 
eliminated from the equation for u ( Q ,  the resultant equation reduces to one of the well 
known soliton equations. For example, in the models used by Laedke et a1 (1985) and 
Pnevmatikos (1988), the interaction term depends on u(x) through a function @(U) 
which is chosen such that @’(U) V(u). As a result of this assumed form of interaction, 
the coupling term only modifies the coefficient of d V/du term in the equation for u(x) ,  
which in turn becomes solvable. On the other hand, in our case, the coupling term 
modifies the coefficient of the uE5 term (equation ( 2 ) )  and here also the theory becomes 
solvable. However, a better model is one which not only is solvable but also provides 
more information about the system, which may be experimentally tested. Apart from 
the common features (such as soliton excitation) between the Pnevmatikos and the 
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present model, we feel that our model is more suitable in this context, for the following 
two reasons. 

(i) It is expected that energetically a linear coupling between the two sublattices 
would be preferable to a non-linear coupling. 

(ii) Because of the structure of the theory, two modes of soliton excitation, i.e. fast- 
mode and slow-mode solitons (Yomosa 1983) are possible here. 

The fast-mode soliton is an interesting type of soliton, which cannot be found in the 
Pnevmatikos (1988) model. This is because in our case the soliton velocity modulates 
the characteristic velocity of the light-ion sublattice as a direct implication of the two- 
sublattice coupling. The slow- and fast-mode solitons contribute to the negative and 
positive energies respectively of the interaction between two sublattices (Yomosa 1983). 
In the Pnevmatikos (1988) model, the implication of the sublattice coupling is only to 
modify the coefficient of the d V/d U term in the equation for u(E) and hence does not 
give any new information, apart from the soliton excitation, which is obtained from all 
the solvable models. We feel that experimentally one should look for these two types of 
soliton which will decide in favour of a particular theory and thus also prevent others 
from presenting new solvable models that are derived from the same old trick! 
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